Wavelet-based ECG data compression optimization with genetic algorithm

نویسندگان

  • Tsung-Ching Wu
  • King-Chu Hung
  • Je-Hung Liu
  • Tung-Kuan Liu
چکیده

With a direct impact on compression performance, optimal quantization scheme is crucial for transformbased ECG data compression. However, traditional optimization schemes derived with signal adaption are commonly inherent with signal dependency and unsuitable for real-time application. In this paper, the variety of arrhythmia ECG signal is utilized for optimizing the quantization scheme of wavelet-based ECG data compression based on a genetic algorithm (GA). The GA search can induce a stationary relationship among the quantization scales of multi-resolution levels. The stationary property facilitates the control of multi-level quantization scales with a single variable. For this aim, a three-dimensional (3-D) curve fitting technique is applied for deriving a quantization scheme with linear distortion characteristic. The linear distortion property can be almost independent of ECG signals and provide fast error control. The compression performance and convergence speed of reconstruction quality maintenance are also evaluated by using the MIT-BIH arrhythmia database.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet Threshold-Based ECG Data Compression Technique Using Immune Optimization Algorithm

In this paper, a new ECG compression method called Wavelet Threshold Based Immune Algorithm (WTBIA) is proposed. This method based on finding the best threshold level for each wavelet subband using Immune Algorithm (IA). The WTBIA algorithm consists of three main steps: 1) Applying 1-D Discrete Wavelet Transform (DWT) on ECG signal; 2) Thresholding of wavelet coefficients in each subband; and 3...

متن کامل

ECG data compression using a neural network model based on multi-objective optimization

Electrocardiogram (ECG) data analysis is of great significance to the diagnosis of cardiovascular disease. ECG compression should be processed in real time, and the data should be based on lossless compression and have high predictability. In terms of the real time aspect, short-time Fourier transformation is applied to the processing of signal wave for reducing computational time. For the loss...

متن کامل

8 ECG Signal Compression Using Discrete Wavelet Transform

Transmission techniques of biomedical signals through communication channels are currently an important issue in many applications related to clinical practice. These techniques can allow experts to make a remote assessment of the information carried by the signals, in a very cost-effective way. However, in many situations this process leads to a large volume of information. The necessity of ef...

متن کامل

Optimization of Energy Consumption in Image Transmission in Wireless Sensor Networks (WSNs) using a Hybrid Method

In wireless sensor networks (WSNs)‎, ‎sensor nodes have limited resources with regard to computation‎, ‎storage‎, ‎communication bandwidth‎, ‎and the most important of all‎, ‎energy supply‎. ‎In addition‎, ‎in many applications of sensor networks‎, ‎we need to send images to a sink node‎. ‎Therefore‎, ‎we have to use methods for sending images in which the number and volume of packets are optim...

متن کامل

ECG Signal Compression using Energy Compaction Based Thresholding of the Wavelet Coefficients

A wavelet-based method for the compression of electrocardiogram (ECG) signal is presented. The original ECG signal are firstly preprocessed after that the preprocessed signal is digitized. The discrete wavelet transform (DWT) is applied to the digitized ECG signal; then the resulting wavelet coefficients are thresholded using a threshold based on energy packing efficiency of the wavelet coeffic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013